Once a valid application has been submitted, a minimum of five reviewers will be assigned to score each submission. Those judges will offer both scores and comments against each of four distinct traits. Each trait will be scored on a 0-5 point scale, in increments of 0.1. Those scores will combine to produce a total normalized score. Examples of possible scores for a trait are: 1.4, 3.7, etc.
The most straightforward way to ensure that everyone is treated by the same set of standards would be to have the same judges score every application; unfortunately, due to the number of applications that we may receive, that is not possible.
Since the same judges will not score every application, we have carefully crafted an approach to ensure that each application will be treated fairly. One judge scoring an application may take a more critical view, giving any assigned candidate a range of scores only between 1.0 and 2.0, as an example; meanwhile, another judge may be more generous and want to score every submission between 4.0 and 5.0.
For illustrative purposes, let’s look at the scores from two hypothetical judges:
The first judge is far more generous, as a scorer, than the second judge, who gives much lower scores. If your application was rated by the first judge, it would earn a much higher total score than if it was assigned to the second judge.
We have a way to address this issue. We ensure that no matter which judges are assigned to you, each application will be treated fairly. To do this, we utilize a mathematical technique relying on two measures of distribution, the mean and the standard deviation.The mean takes all the scores assigned by a judge, adds them up, and divides them by the number of scores assigned, giving an average score.
Formally, we denote the mean like this:
The standard deviation measures the “spread” of a judge’s scores. As an example, imagine that two judges both give the same mean (average) score, but one gives many zeros and fives, while the other gives more ones and fours. It wouldn't be fair, if we didn’t consider this difference.
Formally, we denote the standard deviation like this: